
m3pl: A Work-FLOWS ontology extension to
extract choreography interfaces

Armin Haller and Eyal Oren

Digital Enterprise Research Institute (DERI)
Galway, Ireland

firstname.lastname@deri.org

Abstract. Cross-organisational interoperability is a key issue for suc-
cess in B2B e-commerce applications. To achieve this interoperability,
choreography descriptions are necessary that describe how the business
partners can cooperate. In existing approaches, these choreography de-
scriptions are independent of the internal workflows of the partners.

We present a framework for extracting choreography interface descrip-
tions from internal workflow models. Our approach comprises two steps:
first we map internal workflow models into a intermediary formal model,
then we generate choreography interfaces from it. In this paper we present
m3pl, an ontology extension based upon the First Order Ontology for
Web Services (FLOWS) [2]. The extensions provide relations to model
workflow views and choreography interfaces.

1 Introduction

Organisations offer business functionalities to their customers, and implement
these functionalities in their business processes. For years, organisations have
used Workflow Management Systems (WfMSs) to describe and execute their
business processes [6]. Underlying these WfMS are different workflow languages
with many different metamodels. These workflow languages vary in the avail-
able modelling constructs and in the semantics of their constructs. To capture
these semantics and to allow interoperability of WfMS the Process Specification
Language (PSL) [16] was developed. PSL is an ontology that defines workflow
concepts and their semantics. Various extensions have been developed (as part of
the PSL standard), including the First Order Logic for Web Services (FLOWS)
[2] ontology for modelling (compositions of) Web Services.

With the advent of Service Oriented Computing [13] organisations started to
expose their business functionality explicitly as reusable and composable services
using standardised protocols such as WSDL and SOAP. Web Services abstract
the access to the business functionality from the specifics of programming lan-
guages. For using these services organisations provide choreography descriptions
written in languages such as WS-CDL [11], Abstract BPEL [20] or ebXML CPP
[10]. A choreography describes the message exchange patterns employed by a
Web Service interface. These patterns describe how consumers should interact



with the Web Service; they can be described from a global (collaboration) view-
point or from a local (participant) viewpoint. We will use the term choreography
for the global viewpoint, and choreography interface for the participant’s view-
point1.

A fundamental limitation in current approaches to model choreographies is
its independence to the underlying workflow definitions. Although a few recently
published work address the correlation between a choreography interface and its
underlying workflow, current approaches do not focus on an automated map-
ping between them. This independence leads to two problems: (1) if any change
occurs in the internal workflow model, choreography descriptions have to be
manually synchronised with the workflow definition, and (2) it is not possible to
automatically verify consistency of internal workflow descriptions and external
choreography interfaces.

This paper presents a framework for combining internal workflow definitions
and external choreography descriptions; an overview is shown in Fig. 1. With
the framework one can semi-automatically generate choreography interfaces in
various languages from workflow models in various languages. The framework
is based on PSL [16], an ontology for capturing business processes and FLOWS
[2], an extension to PSL for Web Service interactions.

Workflow Model I
(Web Service 

Composition Language 
e.g. BPEL)

Workflow Model II
(Workflow Management 

System e.g. IBM 
Workflow MQ)

Workflow Model 
...

m3pl

Choreography 
Interface I

(formal model e.g. 
WSMO Choreography)

Choreography 
Interface II
(Web Service 
Choreography 

Language e.g. WS-
CDL)

Choreography 
Interface III

(Business Protocol e.g. 
ebXML CPP, 
RosettaNet)

Unidirectional 
mapping

Bidirectional 
mapping

Process Specification Language (PSL) /
First Order Logic for Web Services (FLOWS

Fig. 1. Relating workflow models to choreography interfaces

The paper is structured as follows: based on a motivating RosettaNet col-
laboration example described in section 2, we analyse the requirements for our
framework in section 3. We present our ontology in section 4. In section 5 we
outline the methodology to follow to map from the internal workflow model to
m3pl and to extract different choreography interfaces. Finally we discuss related
work in section 6 and conclude in section 7.
1 The choreography interface is also called behavioural interface by Dijkman and Du-

mas [5] or abstract process in BPEL4WS [20].



2 Motivating Example

In this section we present an example cross-organisational collaboration. We
will illustrate the problems that companies face when designing collaborative
business processes with a request-for-quote (RFQ) process.

2.1 Current situation

An automotive parts vendor implements and executes his internal processes with
IBM Websphere MQ Workflow2. One of the vendor’s processes concerns the
processing of requests for quotes. Figure 2 shows a simplified view of this mod-
elled in MQ Workflow. The symbols on the left of the picture denote a source
and sink node and represent the start and end of the MQ Workflow process
model. Dashed arrows show data transferred between activities and solid arrows
denote the control flow.

Fig. 2. IBM MQ Workflow RFQ

The process starts with an RFQ from a customer. The vendor checks whether
the requested part, say an electric generator, is available in stock and can be
delivered within the time specified. If the product is available the vendor prepares
a quote, otherwise he returns a referral including the reason for non-delivery.

2.2 Preferred situation

The vendor wants to automate the collaboration with his partners. This would
minimise the manual labour by enforcing partners to directly invoke interfaces to

2 for our analysis we have used v3.4 of the product.



its internal WfMS. An example for such an automation is the initial data input.
Currently this data is manually entered into the system; the goal of the vendor
is for this input to come directly from the external business partner. To enable
automatic collaboration the vendor needs to describe the public view on his
business processes. To comply with industry standards this public process should
conform to the standardised RosettaNet choreography interface PIP 3A13; which
describes a request for quotation.

Figure 3 shows a RosettaNet collaboration and the internal process model
described above in a UML activity diagram. Public activities (the RosettaNet
PIP 3A1) are displayed in black and private activities in white. The seller’s
choreography is formed by the black activities in the right swimlane and the
buyer’s choreography by the black activities in the left swimlane respectively.

SellerBuyer
Request for 
Quote (RFQ) Process RFQ

Receive
RFQ

Send 
RFQ

Check Product 
Availability

Send
Part
Info

Process Quote

Prepare
Referral

Receive
Part
Info

Send 
Referral

Receive
Referral

Quote
Response

Send 
Account

Info

Receive
Account 

Info
Send 
Quote

Receive
Quote

Fig. 3. External Process (RosettaNet PIP)

In this example the internal workflow is straightforward and for the purpose
of simplification it is already aligned to an external standard process in terms
of a RosettaNet PIP 3A1. Thus it is not difficult to model the external part
of the process in any choreography description language. However, in reality
the processes can be significantly more complex, and automatic extraction of
choreography interfaces is desired.

In order to automatically extract the choreography interface, the internal
business process has to be extended by information specific to external processes
identified in the following section. Subsequently the model should be extracted
to a choreography descriptions language. These features are currently not offered
by MQ Workflow or any other WfMS.
3 http://www.rosettanet.org/PIP3A1.



3 Requirements Analysis

We can derive four basic requirements for the above collaboration scenario. They
also reflect requirements on a choreography language identified in [1].

1. Model internal workflow: we need to model the internal workflow (shown
in figure 2) of the business partner whose choreography interface we want to
generate (the supplier in this example).
The internal workflow has to be formally specified to describe the business
processes unambiguously. A mere syntactic model could lead to inconsistent
interpretations; e.g. a split can have different meanings in different models.

2. Model choreography-related concepts in the workflow: to generate
the choreography interface from the internal workflow we need to add ad-
ditional annotations. These annotations (such as visibility of activities or
role of partners) are not part of the internal workflow, because they are of
no significance for workflow enactment, but only for a cross-organisational
choreography. It is necessary to annotate:

(a) the choreography interface as a partial view on the internal workflow
of the service provider. Choreography interfaces are currently modelled
in a multitude of languages. These languages are either task-flow based
(i.e. WS-CDL, BPEL4WS) or dependency based (i.e. WSMO Chore-
ography, OWL-S Process Model). Thus the choreography interface model
has to be capable of capturing both modeling alternatives.

(b) the visibility of tasks: some tasks in a collaboration are private, other
are public. Also, some tasks might be publicly visible to one participant,
but private to another. The generated choreography interface for one
partner should only include the tasks marked as visible to him.

(c) the role a party can play when engaging in collaborations. A role defines
the observable behaviour a party exhibits in order to collaborate with
other parties. A “buyer” role for example is associated with the purchase
of goods or services and the “seller” role is associated with providing
those goods or services.

(d) the direction of the communication represents the communication
route in a specific interaction and represents constraints on what roles
have to be adopted by the participants. A wholesaler for example might
play the “seller” role in one interaction and the “buyer” role in some
other interaction. A direction relation requires a sending and a receiving
participant.

(e) messages. As it can be seen in figure 3 messages are used to transfer data
between activities. The explicit representation of messages is commonly
not part of workflow models. Even if this fundamental approach to model
data flow is possible in the underlying workflow model, it is only used to
transfer data internally between activities. In the case of a collaboration
these messages are sent between the participants and have usually a
message type and some payload associated with it.



(f) the transactional boundaries of activities to facilitate recovery in the
event of a participant failure. The model should allow to define transac-
tional blocks that contain one or many activities that are followed when
the effects of a service need to be reversed.

3. Construct choreography interface from internal workflow: this is
the requirement that drives the framework: the internal workflow model of
a particular business process should be reused when constructing a choreog-
raphy interface, and this process should be automated. Automation requires
that mediators are available to different choreography specification represen-
tations.

4. Validate compatibility of choreography interface to internal work-
flow: there are several cases where a pre-existing choreography interface
has to be validated against an existing workflow model. For example, when
partners use a standardised choreography, and extract the choreography in-
terfaces of the participants from this agreement. But a participant might
very well already have a workflow model implemented for his business func-
tionality. It is then necessary to verify whether the existent workflow model
is compatible to the choreography interface (behavioural equivalence).

4 Ontology for Choreography Interfaces

In what follows we describe the relations in m3pl capturing the requirements
identified in the previous section. Our ontology is an extension to PSL [16] mod-
elled in a first-order language. Due to space limitations we do not include the
axioms constraining the relations described below. However, where possible we
explain how a relation is constrained by the primitive lexical relations axioma-
tised in PSL-Core.

4.1 Introducing m3pl

To model the internal workflow we base our model on PSL [16]. PSL follows
a layered approach in the language design, which gives us the resources to express
information involving concepts that are not part of the PSL-Core. Thus we can
represent arbitrary any workflow model in PSL by introducing extensions which
are either defined by relations in the PSL-Core or by axioms that are constraining
the interpretation of each new language construct.

The first requirement on the relations associated with the choreography
model in m3pl is to encompass the two prominent modelling primitives. First
we have to be able to extract to different task-flow based choreography descrip-
tion languages, i.e. to Abstract BPEL [20], WS-CDL [11] and ebXML CPP [10]
and second to dependency-based ontology-based choreography descriptions, i.e.
WSMO Choreography [18], OWL-S Process Model [12]. PSL provides relations
to incorporate both workflow modelling primitives.

The m3pl extension offers a model to describe the choreography interface of
some internal workflow model, whereas the choreography interface represents a



model of some functionality (i.e. services). The functional entity in m3pl is a
member of the set of such services in the universe of discourse of the interpreta-
tion. Services are reusable behaviours within the domain and relate to activities
in PSL. A service occurrence models an occurrence of a PSL complex activity
that is associated with the service.� �

service(?functional entity)
service activity(?functional entity,?activity)
service occurrence(?functional entity,?occurence)� �

Listing 1.1. Service Relations

The views extension defines a relation to give one the possibility to restrict
the visibility of specific activity occurrences to a certain role and thus create
different views [4, 17] on a workflow model. The visible(?occurrence,?role)
relation associates an activity occurrence to a role. By relating a participant to a
specific role the visibility of activity occurrences is guaranteed to be constrained
to the defined business partner only.� �

visible(?occurrence,?role)� �
Listing 1.2. Visibility Relation

Roles define the conversational relationship between two or more partners by
defining the part played by each of them in the conversation. The partner link(
?role,?functional entity) relation models such conversational relationships.
The participate(?agent,?role) relation is used to relate an organisation to
a role that it is playing in a specific collaboration.� �

partner link(?role,?functional entity)
participate(?agent,?role)� �

Listing 1.3. Conversational Role Relations

A key element in choreography description languages as identified above is
the notion of messages. Since there exist different strategies of data passing
in commercial workflow systems and workflow models, we offer relations which
allow to model all three strategies as identified in [14].

Data is modelled with predicates and terms in first-order language. They act
as fluents whose values may change as the result of service occurrences. Similar
to FLOWS we use the described by relation to associate a message type to a
fluent. Multiple fluents might be associated with one message type, which should
be interpreted as a conjunction of them.

Further we allow to associate the fluent to a channel. The send and receive
relations are used to “transfer” fluents from one activity occurrence to the next.
Both relations are associated with the participates in relation of PSL, which
is used to constrain which objects are involved in a particular occurrence of
an activity. Thus in this data passing modelling approach no occurrence of an
activity can begin without first receiving, and cannot send before it ends. The
read relation is similar to receive, but with a weaker ontological commitment on
the occurrence. It is not required that a send occurrence preceded the occurrence
associated with the read relation.



� �
described by(?message type, ?fluent)
send(?fluent, ?channel, ?occurrence)
receive(?fluent, ?channel, ?occurrence)
read(?fluent, ?occurrence)
input port(?channel,?occurrence)
output port(?channel,?occurrence)� �

Listing 1.4. Data Modelling Relations

Channels are used to model message-based communication as used in Web
Services. We adopt the relations offered in FLOWS [2]. However, we do not relate
channels to service occurrences, but to activity occurrences. Channels are a way
to model explicit data passing, but are not required to exist since fluents can be
related to activity occurrences via the read relation.

In order to capture dependency based workflow models every atomic activ-
ity occurrence can be associated with preconditions and effects. The occurrence
of an atomic activity therefore transforms an initial state of the world (precon-
ditions) into a final state that represents the world (effects) after the execution.
Essentially the two relation are similar to the send and receive relation described
earlier, since preconditions and effects are also represented by fluents in the on-
tology. The only difference being that they are not associated with a channel.
However, they are a different concept in the real world, since preconditions and
effects are not necessarily constraints on data, but might be constraints on the
existence of objects.� �

precondition(?conditional fluent,?occurrence)
effect(?conditional fluent,?occurrence)� �

Listing 1.5. Dependency relations

All task-flow based choreography languages use control constraints to model
the control flow of Web Services. However they are not natively included in PSL.
Thus we reuse the definitions in FLOWS with minor extensions, which are to-
gether sufficient to model the majority of constructs available in choreography
description languages.� �

sequence(activity)
split(activity)
IfThenElse(activity)
LoopUntil(activity)
wait(activity)� �

Listing 1.6. Control Constraint Relations

A sequence relation specifies that all subactivity occurrences of a complex
activity are totally ordered. It corresponds to a soo precedes relation in the
Duration and Ordering Theory of PSL.

The subactivity occurrences of a split (corresponds to a flow construct in
BPEL) activity are constrained by two relations from the PSL ontology. One sub-
activity occurrence soo precedes any number of subactivity occurrences while
they are strong parallel to each other.

The IfThenElse activity is a nondeterministic activity such that the sub-
activity occurrences are constrained on the state conditions that hold prior to



the activity occurrence. The use of IfThenElse is equivalent to a conditional
activity in PSL.

The subactivity occurrences of a LoopUntil activity occur multiple times
until the state condition is satisfied. It is equivalent to a conditional activity in
the PSL ontology whose occurrences are repetitive, whereas the occurrence trees
have different structure, depending on the cardinality.

The subactivity occurrences of a wait activity delays the process for a certain
timeperiod or until a timepoint has passed.

Error handling in collaborative interactions is as important as transac-
tional support in local application environments. The use of ACID transactions
[7] is not feasible in collaborations, because locks on some activities cannot be
maintained for periods of an asynchronous interaction. Error handling therefore
relies heavily on the well-known concept of compensation. That is, if some state
occurs alternate activities are performed which reverse the effects of a previous
activity that was carried out and caused the error. To model such situations,
we add failure handling activities, which are conditioned over an exception state
raised by an earlier activity occurrence.

5 A methodology to extract choreographies

In the following section we show the applicability of the m3pl ontology exten-
sions by outlining the methodology to follow when extracting choreography de-
scriptions from internal workflow definitions. We apply the methodology to our
example introduced in section 2, whereas we will focus on the supplier.

1. First the syntactic model (c.f. figure 2) underlying most Workflow Manage-
ment Systems has to be lifted to the PSL/FLOWS ontology. In order to
generate it automatically, mapping rules are required. This is not a trivial
task since the generic mapping rules have to capture the operational seman-
tics of the underlying WfMS.
In our scenario the supplier models and enacts its business processes with
IBM MQ Workflow. The workflow model is serialised in a proprietary de-
scription file called .ftl. We have identified the mapping rules necessary to
translate our example workflow. However, it is not in the scope of this paper
to define a generic mapping framework for arbitrary any workflow in IBM
MQ Workflow. Listing 2.1. shows a snippet of the model from figure 2, i.e.
the Check Product Availability activity followed by a decision point and ei-
ther the Prepare Referral or the Prepare Quote Response activity. The full
listing can be found at http://m3pe.org/ontologies/PSLRFQ.kif.



state(productListedOK)
state(productListedFailed)

∀(?occRFQWorkflow)
occurence of(?occRFQWorkflow, RFQWorkflow)

⇒ ∃(?occProcessRFQ, ?occCheckProductAvailability)
(occurrence of(?occProcessRFQ, ProcessRFQ) ∧
occurrence of(?occCheckProductAvailability, CheckProductAvailability) ∧
subactivity occurrence(?occProcessRFQ, ?occRFQWorkflow) ∧
subactivity occurrence(?occCheckProductAvailability, ?occRFQWorkflow) ∧
root occ(?occProcessRFQ) ∧
soo precedes(?occProcessRFQ, ?occCheckProductAvailability, ?occRFQWorkflow)) ∧

(holds(productListedFailed, ?occCheckProductAvailability) ∧
not(productListedOK, ?occCheckProductAvailability))
⇒ ∃(?occPrepareReferral)

(occurrence of(?occPrepareReferral, PrepareReferral) ∧
subactivity occurrence(?occPrepareReferral, ?occRFQWorkflow) ∧
leaf occ(?occPrepareReferral, ?occRFQWorkflow)) ∧

(holds(productListedOK, ?occCheckProductAvailability) ∧
not(productListedFailed, ?occCheckProductAvailability))
⇒ ∃(?occPrepareQuoteResponse)

(occurrence of(?occPrepareQuoteResponse, PrepareQuoteResponse) ∧
subactivity occurrence(?occPrepareQuoteResponse, ?occRFQWorkflow) ∧
leaf occ(?occPrepareQuoteResponse, ?occRFQWorkflow)) ∧

Listing 2.1. Snippet of internal workflow in PSL/FLOWS

2. Next, the ontology instance representing a semantically equivalent model
to the underlying workflow definition has to be annotated with choreogra-
phy specific constructs from m3pl. Since domain experts knowledgeable of
what parts of the workflow model are required to be published to partners
and technology experts competent in defining the message exchange are not
necessarily familiar with formal frameworks (i.e. First Order Logic), editor
support is required to ease the annotation task. We are currently building
a domain specific GUI-based tool for annotating the extracted model with
concepts defined in our ontology.
However, in the context of this paper we have manually annotated the gener-
ated ontology instance without tool support. The complete annotated model
can be found at http://m3pe.org/ontologies/RFQm3pl.kif. This annota-
tion is comprised of relations defined in section 4 capturing the collaborative
role model, the visibility constraints, the message descriptions and its passing
directions.
Listing 2.2. shows the m3pl annotations added to the snippet of our internal
workflow from Listing 2.1.



service(RFQProcessing)
service activity(RFQProcessing, RFQWorkflow)
service occurrence(service, activity occurrence)
role(Customer, RFQProcessing)
role(Supplier, RFQProcessing)
participant(Bosch, Supplier)
...
∀(?occRFQWorkflow)

occurence of(?occRFQWorkflow, occRFQWorkflow)

⇒ ∃(?occProcessRFQ, ?occCheckProductAvailability)
...

visibility(?occProcessRFQ, Customer) ∧
visibility(?occCheckProductAvailability, Supplier) ∧
input port(transmitRFQ, ?occProcessRFQ) ∧
...
⇒ ∃(?occPrepareReferral)
...

visibility(?occPrepareReferral, Customer) ∧
output port(transmitReferral, ?occPrepareReferral)) ∧

...
⇒ ∃(?occPrepareQuoteResponse)
...

visibility(?occPrepareQuoteResponse, Customer) ∧
output port(transmitQuoteResponse, ?occPrepareQuoteResponse) ∧

Listing 2.2. Annotation added to the extracted PSL/FLOWS model

3. Based on this ontological model choreography interfaces for each partner in
the collaboration can be generated. Most importantly all activities marked
in the previous step as private to the supplier will be omitted in the chore-
ography interface. The split modelled in the choreography interface pub-
lished to the customer is abstracted in a way that the evaluation of the
condition is non-deterministic to the buyer and is modelled in the choreog-
raphy interface as follows: (holds(True, ?occCheckProductAvailability) ∧
not(False, ?occCheckProductAvailability))

4. If required a multiparty choreography can be assembled. Since our model is
based on a formal ontology this matching process can be on different levels
of abstraction. The simplest matching algorithm compares the message type
and the counterparting message passing direction. More complex matching
can include full reasoning over the first-order models proving the equivalence
of two choreography interface models.

5. Finally, choreography descriptions in existing languages such as WS-CDL,
Abstract BPEL or ebXML CPP can be generated. Similar to step one, map-
ping rules have to be defined for each choreography description language.
Different to above though the mapping is unidirectional, since the choreog-
raphy descriptions represent an abstraction omitting information necessary
in the internal workflow definition



An example extracted choreography interface from our model in a BPEL
description is shown in listing 2.3. The interface starts with the definition of
the partners, generated from the manually added annotations. The actual
process starts at line 8 and contains the three workflow activities as invoke
and receive operations. The check-product-availability activity, the split con-
ditions and the internal data transfer are omitted from the choreography
interface since they were marked as private information.� �

1 <wsdl>
2 <plnk:partnerLinkType name=”buyerSellerRelation”>
3 <plnk:role name=”seller”><plnk:portType name=”rfqpw”/></plnk:role>
4 <plnk:role name=”buyer”><plnk:portType name=”rfqpwCallback”/></plnk:role>
5 </plnk:partnerLinkType>
6 </wsdl>
7
8 <process name=”RFQProcessing”>
9 <partnerLink name=”buyerSellerRelation” partnerLinkType=”lns:buyerSellerRelation”

10 myRole=”seller” partnerRole=”buyer”/></partnerLinks>
11 <variables>
12 <variable name=”rfqMessage” messageType=”lns:rfq”/>
13 <variable name=”quoteMessage” messageType=”lns:quote”/>
14 <variable name=”referralMessage” messageType=”lns:referral”/>
15 </variables>
16 <sequence name=”main”>
17 <receive name=”processRFQ” partnerLink=”buyerSellerRelation”
18 portType=”lns:rfqpw” operation=”initiate” variable=”rfqMessage”/>
19 <assign><copy>
20 <from opaque=”yes”/><to variable=”condition” property=”xsd:boolean”/>
21 </copy></assign>
22 <switch name=”quoteDecision”>
23 <case condition=”if bpws:getVariableData(’condition’) = true”>
24 <invoke name=”prepareReferral” partnerLink=”buyerSellerRelation”
25 portType=”lns:rfqpwCallback” operation=”onResult”
26 inputVariable=”quoteMessage”/>
27 </case>
28 <otherwise>
29 <invoke name=”processQuote” partnerLink=”buyerSellerRelation”
30 portType=”lns:rfqpwCallback” operation=”onResult”
31 inputVariable=”referralMessage”/>
32 </otherwise>
33 </switch>
34 </sequence>
35 </process>� �

Listing 2.3. Abstract BPEL description

6 Related Work

Our work is most closely related to several approaches to views on process mod-
els, i.e. [3, 4, 17, 15, 21].

Chebbi et al. [3] propose a view model based on Petri Nets. They introduce
cooperative activities, which can be partially visible for different partners. The
approach is validated on mappings from two different WfMSs. However, the
model requires n2 mappings and does not explain how to model the data aspect,
i.e. the message transfer between partners.

Chiu et al. [4] present a cross-organisational meta model which is imple-
mented in XML. Similar to the cooperative activities in [3] the model provides
so called cross-organisational communications, which allow to define message
transfer and its direction. The model is implemented in an extension to the
ADOME-WfMS, called E-ADOME. The model deals only with sequential ac-
tivities in the abstracted view and does not tackle an integrated approach in
choreography extraction and requires the specific model to be used in the E-
ADOME tool.



Schulz and Orlowska [17] introduce a Petri-Net based state transition ap-
proach that binds states of private workflow tasks to their adjacent workflow
view-task, where existing workflows are augmented by means of one or more
activities or sub-workflows of an external workflow. The model is conceptualised
in a supporting architecture. The approach identifies mappings in its conceptual
architecture, but it does not describe how to integrate different workflow models.
Further the approach abstracts from the data aspect.

Sayal et al. [15] introduce service activities (that represent trade partner
interaction) as workflow primitives, but their approach is specific to one work-
flow modelling tool and addresses neither workflow integration nor choreography
interface extraction.

Zhao et al. [21] define a relative workflow model representing the view of
one partner on local workflows of another partner. They present composition
rules how to generate the relative workflow and a simple matching algorithm to
connect two local workflow process. Similar to the other approaches it is meta
model independent.

Several approaches address interoperability issues between Workflow Man-
agement Systems (WfMS), such as Mobile [9], Meteor [19] and CrossFlow [8].
However, all of these approaches require a pre-established partner agreement on
the semantics of the process models. Further they were all proposed before the
advent of Service Oriented Architectures and therefore do no deal with standard
choreography description languages.

7 Conclusion

In existing approaches, choreography descriptions are independent of the internal
workflows of the partners and have to be manually mapped.

We presented m3pl, an ontology extension to PSL and FLOWS to formally
capture choreography-specific information. The ontology extension together with
PSL can act as a connecting ontology to integrate different workflow models and
subsequently extract external process models.

We have shown how the framework can be used to extract a choreography
interface of an example workflow in a RosettaNet collaboration. This initial
validation is based on the translation of an example workflow represented in
IBM Websphere MQ Workflow to PSL, which is then manually annotated with
relations offered in the m3pl extension to further extract a BPEL process.

One direction of our future work is to check the equivalence of to choreog-
raphy models. Given a choreography interfaces it is desirable to verify whether
it is compatible with the choreography interface of a partner and -if they are
indeed compatible- to construct a multiparty choreography.

Acknowledgment

This material is based upon works supported by the Science Foundation Ireland
under Grant No. SFI/04/BR/CS0694.



References

1. D. Austin, A. Barbir, E. Peters, and S. Ross-Talbot. Web Services Choreography
Requirements. Working draft, W3C, Mar. 2004.

2. S. Battle, et al. Semantic Web Services Ontology (SWSO). Member submission,
W3C, Sep. 2005.

3. I. Chebbi, S. Dustdar, and S. Tata. The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng., 56(2):139–173, 2006.

4. D. K. W. Chiu, et al. Workflow view driven cross-organizational interoperability
in a web service environment. Inf. Tech. and Management, 5(3-4):221–250, 2004.

5. R. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint approach.
Int. Journal of Cooperative Information Systems, 13(4):337–368, Dec. 2004.

6. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases, 3(2):119–153, 1995.

7. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco, 1993.

8. P. Grefen, K. Aberer, H. Ludwig, and Y. Hoffner. CrossFlow: Cross-organizational
workflow management for service outsourcing in dynamic virtual enterprises. IEEE
Data Engineering Bulletin, 24(1):52–57, 2001.

9. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture and Implementation. Int. Thomson Computer Press, 1996.

10. N. Kartha et al. Collaboration-protocol profile and agreement specification, v2.1,
Apr. 2005.

11. N. Kavantzas et al. Web services choreography description language, Nov. 2005.
12. D. Martin, et al. Owl-s: Semantic markup for web services. Member submission,

W3C, 2004. Available from: http://www.w3.org/Submission/OWL-S/.
13. M. P. Papazoglou and D. Georgakopoulos. Service-oriented computing. Commu-

nications of the ACM, 46(10):25–28, 2003.
14. N. Russell, A. H. ter Hofstede, D. Edmond, and W. M. P. van der Aalst. Workflow

data patterns. FIT-TR-2004-01, Queensland University of Technology, 2004.
15. M. Sayal, F. Casati, U. Dayal, and S. Ming-Chien. Integrating workflow manage-

ment systems with business-to-business interaction standards. In Proc. of the 18th
Int. Conf. on Data Engineering, pp. 287–296. 2002.

16. C. Schlenoff, et al. Process specification language (PSL): Overview and version
1.0 specification. Tech. Rep. NISTIR 6459, National Institute of Standards and
Technology, Gaithersburg, MD, 2000.

17. K. A. Schulz and M. E. Orlowska. Facilitating cross-organisational workflows with
a workflow view approach. Data Knowl. Eng., 51(1):109–147, 2004.

18. J. Scicluna, A. Polleres, and D. Roman. Ontology-based choreography and orches-
tration of wsmo services. Wsmo working draft v0.2, DERI, 2005. Available from:
http://www.wsmo.org/TR/d14/v0.2/.

19. A. Sheth, et al. The METEOR workflow management system and its use in pro-
totyping significant healthcare applications. In Proc. of the Toward an Electronic
Patient Record Conf. (TEPR’97), pp. 267–278. Nashville, TN, USA, 1997.

20. S. Thatte et al. Business process execution language for web services, v1.1, May
2003.

21. X. Zhao, C. Liu, and Y. Yang. An organisational perspective on collaborative
business processes. In Proc. of 3rd Intl. Conf. on Business Process Management,
pp. 17–31. Sep. 2005.


